Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
I love English

1, Cho a,b các số thực khác 0. Chứng minh: \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

2, Cho x,y,z là các số thực khác 0 thỏa mãn: \(x+y+z+xy+yz+zx=6xyz\).Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

zZz Cool Kid_new zZz
4 tháng 6 2019 lúc 7:43

\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

\(\Leftrightarrow\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\ge0\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\)

\(\Rightarrow Q.E.D\)

Dấu "=" xảy ra khi a=b

Đào Trọng Luân
4 tháng 6 2019 lúc 14:44

\(gt\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=6\)

Đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)thì \(P=a^2+b^2+c^2\)và \(a+b+c+ab+bc+ca=6\)

Giải:

Ta có: \(x^2+1\ge2\sqrt{x^2\cdot1}=2x\)

Tương tự rồi cộng theo vế ta được: \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1) 

Lại có: \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2) 

Cộng (1), (2) theo vế ta được:

\(3P+3\ge2\left(x+y+z+xy+yz+zx\right)=2\cdot6=12\)

\(\Rightarrow3P\ge9\Leftrightarrow P\ge3\)

MinP = 3 khi a = b = c = 1 hay x = y = z = 1


Các câu hỏi tương tự
Nguyễn Thị Minh Nguyệt
Xem chi tiết
Nguyễn Anh Tuấn
Xem chi tiết
Xem chi tiết
kim chi nguyen
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Violympic toán và những...
Xem chi tiết
Đặng Noan ♥
Xem chi tiết
Taeyeon Kim
Xem chi tiết
Nguyễn Quốc Khánh
Xem chi tiết