Bài 1:
a) \(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\frac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}\cdot\frac{\sqrt{a}-1-a+\sqrt{a}}{\sqrt{a}-1}\)
\(=\frac{a+2\sqrt{a}+1}{\sqrt{a}+1}\cdot\frac{-a+2\sqrt{a}-1}{\sqrt{a}-1}\)
\(=\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}\cdot\frac{-\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}\)
\(=-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)\)
\(=-\left(a-1\right)\)
\(=1-a\)
b) \(P=\sqrt{x^2+6x+2011}\)
\(P=\sqrt{x^2+6x+9+2002}\)
\(P=\sqrt{\left(x+3\right)^2+2002}\ge\sqrt{2002}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-3\)