`(1-4x)/(3)=14/18-(x+5)/(6)`
`=>(1-4x)/(3)=14/18-(3(x+5))/(18)`
`=>(1-4x)/(3)=(14-3(x+5))/(18)`
`=>(1-4x)/(3)=(14-3x-15)/(18)`
`=>(1-4x)/(3)=(-1-3x)/(18)`
`=>(6(1-4x))/(18)-(-1-3x)/(18)=0`
`=>(6(1-4x))/(18)+(1+3x)/(18)=0`
`=>(6-24x)/(18)+(1-3x)/(18)=0`
`=>(6-24x+1-3x)/(18)=0`
`=>(7-21x)/(18)=0`
`=>7-21x=0`
`=>21x=7-0`
`=>21x=7`
`=>x=7:21`
`=>x=7/21`
`=>x=1/3`
\(\dfrac{1-4x}{3}=\dfrac{14}{18}-\dfrac{x+5}{6}\Rightarrow\dfrac{1-4x}{3}+\dfrac{x+5}{6}=\dfrac{14}{18}\Rightarrow\dfrac{2-8x}{6}+\dfrac{x+5}{6}=\dfrac{7}{9}\Rightarrow\dfrac{2-8x+x+5}{6}=\dfrac{7}{9}\Rightarrow\dfrac{7-7x}{6}=\dfrac{7}{9}\Rightarrow9\left(7-7x\right)=6.7\Rightarrow63-63x=42\Rightarrow63x=63-42\Rightarrow63x=21\Rightarrow x=21:63\Rightarrow x=\dfrac{1}{3}\)