\(\dfrac{7^{x+2}+7^{x+1}+7^x}{57}=\dfrac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
a,|7 - 2x| + 7 = 2x
b,| 1 - x | = 4x + 1
c, | x - 1/3 | + 4/5 = | ( 3,2) + 2/5 |
d,| x - 7 | + 2x + 5 = 6
e, 3x - | 2x - 1 | = 2
a) 5(x-2)(x+3)=1
b) 7(x-2024)2 = 23- y2
c) |x2+ 2x| + |y2- 9|= 0
d) 2x+ 2x+1+2x+2+2x+3=120
e) ( x- 7 )x+1- (x - 7)x+11=0
f) 25 - y2= 8(x 2012)2
a, |x +7| - x = 7
b, |3x - 7| = 2x + 1
c, | 2x -1| + 1 = x
Tìm x biết:
\(\frac{6^{x+3}-6^{x+1}+6^x}{211}=\frac{7^{2x}+7^{2x+1}+7^{2x-3}}{8\frac{1}{49}}\)
Tìm x:
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
a,(2x+1).\(\left(x-\frac{1}{7}\right)=0\)
b,\(7^{2x}+7^{2x+2}=2450\)
Tìm x \(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
tìm x biết : \(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
Tìm x
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)