\(\left(1+2+3+4+5+6+...+999+1000\right)\times\left(0.75\times0.4-\dfrac{3}{4}\times0.3\right)\)
\(=\dfrac{\left(1000+1\right)\times1000}{2}\times\left[0.75\times\left(0.4-0.3\right)\right]\)
\(=500500\times0.75\times0.1=375375\)
Giải:
\(\left(1+2+3+4+5+6+...+999+1000\right).\left(0,75.0,4-\dfrac{3}{4}.0,3\right)\)
Số số hạng \(\left(1+2+3+4+5+6+...+999+1000\right)\) là:
\(\left(1000-1\right):1+1=1000\)
Tổng dãy \(\left(1+2+3+4+5+6+...+999+1000\right)\) là:
\(\left(1+1000\right).1000:2=500500\)
\(\Rightarrow\left(1+2+3+4+5+6+...+999+1000\right).\left(0,75.0,4-\dfrac{3}{4}.0,3\right)\)
\(=500500.\left[0,75.\left(0,4-0,3\right)\right]\)
\(=500500.\left[0,75.0,1\right]\)
\(=500500.0,075\)
\(=37537,5\)
=(1000+1)×10002×[0.75×(0.4−0.3)]=(1000+1)×10002×[0.75×(0.4−0.3)]
=500500×0.75×0.1=375375