\(\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times...\times\frac{99}{100}\times\frac{120}{121}=\frac{3\times8\times15\times...\times99\times120}{4\times9\times16\times...\times100\times121}\)
\(\frac{\left(1\times3\right)\times\left(2\times4\right)\times\left(3\times5\right)\times...\times\left(9\times11\right)\times\left(10\times12\right)}{\left(2\times2\right)\times\left(3\times3\right)\times\left(4\times4\right)\times...\times\left(10\times10\right)\times\left(11\times11\right)}=\frac{\left(1\times2\times3\times...\times10\right)\times\left(3\times4\times5\times...\times12\right)}{\left(2\times3\times...\times11\right)\times\left(2\times3\times...\times11\right)}=\frac{12}{11\times2}=\frac{6}{11}\)
(1-1/4).(1-1/9).(1-1/16)....(1-1/100).(1-1/121)
=3/4.8/9.15/16...99/100.120/121
=(1.3/2.2).(2.4/3.3).(3.5/4.4)....(9.11/10.10).(10.12/11.11)
=1.3.2.4.3.5...9.11.10.12/2.2.3.3.4.4...10.10.11.11
=(2.3.4...9.10.11).(3.4.5...10.12)/(2.3.4...9.10.11).(2.3.4....10.11)
=12/2.11
=6/11