\(T=\left(a-2b\right)+\dfrac{4}{\left(a-2b\right)\left(2b+1\right)^2}+2b\ge2\sqrt{\dfrac{4\left(a-2b\right)}{\left(a-2b\right)\left(2b+1\right)^2}}+2b\)
\(T\ge\dfrac{4}{2b+1}+2b=\dfrac{4}{2b+1}+2b+1-1\ge2\sqrt{\dfrac{4\left(2b+1\right)}{2b+1}}-1=3\)
\(T_{min}=3\) khi \(\left(a;b\right)=\left(2;\dfrac{1}{2}\right)\)


