`a,` Với ĐKXĐ: `x \ne +-3,` ta có:
`P = (2x)/(x + 3)+(x + 1)/(x -3) + (3-11x)/(9-x^2)`
`= (2x)/(x + 3) + (x + 1)/(x - 3) + (3 - 11x)/((3 - x)(3 + x ))`
`= (2x)/(x + 3) + (x + 1)/(x - 3) - (3 - 11x)/((x + 3)(x - 3))`
`= (2x . (x - 3))/((x + 3)(x - 3)) + ((x + 1)(x + 3))/((x + 3)(x - 3)) - (3 -11x)/((x + 3)(x - 3))`
`= (2x . (x - 3) + (x + 1)(x + 3) - (3 -11x))/((x + 3)(x - 3)`
`= (2x^2 - 6x + x^2 + 4x + 3 - 3 + 11x)/((x + 3)(x - 3))`
`= (3x^2 + 9x)/((x + 3)(x - 3))`
`= (3x . (x + 3))/((x +3)(x - 3))`
`= (3x)/(x - 3) (đpcm)`
`b,` Ta có: `P = (3x)/(x - 3) = (3x - 9 + 9)/(x - 3) = 3 + 9/(x- 3)`
Để `x` nguyên thì `9 \vdots (x - 3),` ta có:
`9 \vdots (x - 3)` hay `x - 3 \in Ư(9)={+-1;+-3;+-9}`
Vì để `x` nhận giá trị nguyên nên ta nhận `x - 3 = {1;3;9}`
Suy ra: `x = {4;6;12} (TM)`
Vậy: `x ={4;6;12}` thì `P` có giá trị nguyên dương.
`c,` Ta có: `Q = P . (x- 3)/5.` hay `(3x)/(x - 3) . (x - 3)/5 = 1/5`
`(3x)/5 = 1/5`
`3x = 1`
`x = 1 : 3`
`x = 1/3`
Vậy: `x = 1/3`


