`a, (2k-1)^2-9 <=> (2k-1-3)(2k-1+3)`
`=(2k-4)(2k+2)=4(k-2)(k+1) vdots 4`.
`b, 4-(1+3k)^2=(2-1-3k)(2+1+3k)=(-1-3k)(3(1+k)) vdots 3.`
a)
`(2k-1)^2-9`
`=(2k-1-3)(2k-1+3)`
`=(2k-4)(2k+2)`
`=4(k-2)(k+1)`
có \(4⋮4=>4\left(k-2\right)\left(k+1\right)⋮4\)
\(=>\left(2k-1\right)^2-9⋮4\)
b)
`4-(1+3k)^2`
`=(2-1-3k)(2+1+3k)`
`=(1-3k)(3+3k)`
`=3(1-3k)(1+k)`
có \(3⋮3=>3\left(1-3k\right)\left(1+k\right)⋮3\\ =>4-\left(1+3k\right)^2⋮3\)