\(\left(x+5\right)^3-\left(x-3\right)^3-24x\left(x+2\right)\\ =\left(x+5-x+3\right)\left[\left(x+5\right)^2+\left(x+5\right)\left(x-3\right)+\left(x-3\right)^2\right]-24x\left(x+2\right)\\ =8\left[x^2+10x+25+x^2+2x-15+x^2-6x+9\right]-24x^2-48x\\ =8\left(3x^2+6x+19\right)-24x^2-48x\\ =24x^2-24x^2+48x-48x+152\\ =152\)
\(\left(2x-5\right)^3+\left(1-2x\right)^3+3\left(4x-5\right)^2-4\left(6x+7\right)\\ =\left(2x-5+1-2x\right)\left[\left(2x-5\right)^2-\left(2x-5\right)\left(1-2x\right)+\left(1-2x\right)^2\right]+3\left(16x^2-40x+25\right)-24x-28\\ =-4\left[4x^2-20x+25+4x^2-12x+5+1-4x+4x^2\right]+48x^2-120x+75-24x-28\\ =-4\left(12x^2-36x+31\right)+48x^2-120x+75-24x-28\\ =-48x^2+48x^2+144x-144x-124+75-28\\ =-77\)
