ĐK : \(a\ne b\ne c\ne0\)
Đặt \(x=\dfrac{a-b}{c};y=\dfrac{b-c}{a};z=\dfrac{c-a}{b}\) (x;y;z \(\ne0\) )
Ta có : \(N=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+1\)
\(=4+\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)
Thấy : \(\dfrac{y+z}{x}=\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right).\dfrac{c}{a-b}=\dfrac{b-a}{ab}.\dfrac{c}{a-b}=\dfrac{-c}{ab}\)
Tương tự ; ta có : \(\dfrac{x+z}{y}=\dfrac{-a}{bc};\dfrac{x+y}{z}=-\dfrac{b}{ac}\)
Suy ra : \(N=4-\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ab}\right)=4-\dfrac{a+b+c}{abc}=4\) ( do a + b + c = 0 )
Vậy ...