`[(1)/(81)+((1)/(3))^{3}]:[((1)/(3))^{4}+(1)/(243)]`
`=((1)/(81)+(1)/(27)):((1)/(81)+(1)/(243))`
`=((1)/(81)+(3)/(81)):((3)/(243)+(1)/(243))`
`=(4)/(81):(4)/(243)`
`=(4)/(81).(243)/(4)`
`=(4.3^{5})/(3^{4}.4)`
`=3`
\(\left[\dfrac{1}{81}+\left(\dfrac{1}{3}\right)^3\right]:\left[\left(\dfrac{1}{3}\right)^4+\dfrac{1}{243}\right]\)
\(=\left[\dfrac{1}{81}+\dfrac{1}{27}\right]:\left[\dfrac{1}{81}+\dfrac{1}{243}\right]\)
\(=\dfrac{4}{81}:\dfrac{4}{243}=\dfrac{243.4}{81.4}=3\)
`= [1/81 + 1/27] : [1/81 + 1/243]`
`= 4/81 : 4/243`
`= 243/81`
`= 3`
