\(\left(2x-3\right)\left(x-\dfrac{1}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy `x∈{1/2 ; 3/2}`
\(\left(2x-3\right).\left(x-\dfrac{1}{2}\right)=0\)
\(=>\left[{}\begin{matrix}2x-3=0\\x-\dfrac{1}{2}=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy ..
\(\left(2x-3\right)\left(x-\dfrac{1}{2}\right)=0\\\left[{}\begin{matrix}2x-3=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\\ \left[{}\begin{matrix}2x=3\\x=\dfrac{1}{2}\end{matrix}\right.\\ \left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right. \)
TH1:2x-3=0
2x=3
x=-3/2
TH2:x-1/2=0
x=1/2
vậy x = 3/2 hoặc 1/2
\((2x-3)(x-\dfrac{1}{2} )= 0 \)
\(⇒\left[\begin{matrix}2x-3=0\\ x-\dfrac{1}{2}=0\end{matrix}\right. ⇔\left[\begin{matrix}x=\dfrac{3}{2}\\ x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(x \in \)\(\left\{\dfrac{3}{2};\dfrac{1}{2}\right\}\)