a) Đặt \(UCLN\left(2n+5;3n+7\right)=a\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+5\right)⋮a\\\left(3n+7\right)⋮a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3\left(2n+5\right)⋮a\\2\left(3n+7\right)⋮a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(6n+15\right)⋮a\\\left(6n+14\right)⋮a\end{matrix}\right.\)
\(\Rightarrow\left(6n+15-6n-14\right)⋮a\)
\(\Rightarrow1⋮a\)
\(\Rightarrow a\inƯ\left(1\right)\)
\(\Rightarrow a\in\left\{1;-1\right\}\)
-Vậy hai số \(\left(2n+5\right);\left(3n+7\right)\) là hai số nguyên tố cùng nhau, tức là:
\(\dfrac{2n+5}{3n+7}\left(n\in N\right)\) là phân số tối giản.