\(=>A=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{868}\)
\(A=5\cdot\left(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{28.31}\right)\)
\(A=5\cdot\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{28}-\dfrac{1}{31}\right)\)
\(A=5.\left(\dfrac{1}{4}-\dfrac{1}{31}\right)=5\cdot\dfrac{27}{124}=\dfrac{135}{124}\)