Ta có:
\(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\Rightarrow\dfrac{1}{1+2+3+...+n}=\dfrac{2}{n\left(n+1\right)}=\dfrac{2}{n}-\dfrac{2}{n+1}\)
Do đó:
\(P=\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+...+\dfrac{2}{2021}-\dfrac{2}{2022}\)
\(P=\dfrac{2}{2}-\dfrac{2}{2022}=1-\dfrac{1}{1011}=\dfrac{1010}{1011}\)
Đúng 0
Bình luận (0)