\(=\lim\sqrt{n}\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{3-\dfrac{1}{n}}\right)\)
Do \(\lim\sqrt{n}=+\infty\)
\(\lim\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{3-\dfrac{1}{n}}\right)=1-\sqrt{3}< 0\)
\(\Rightarrow\lim\sqrt{n}\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{3-\dfrac{1}{n}}\right)=-\infty\)