-Xét △ABM có: DE//AM (gt)
\(\Rightarrow\dfrac{DE}{AM}=\dfrac{BD}{BM}\) (hệ quả định lí Ta-let) (1)
-Xét △CDF có: AM//DF (gt)
\(\Rightarrow\dfrac{DF}{AM}=\dfrac{DC}{MC}\) (hệ quả định lí Ta-let)
Mà \(BM=MC\) (M là trung điểm BC).
\(\Rightarrow\dfrac{DF}{AM}=\dfrac{DC}{BM}\) (2)
-Từ (1), (2) suy ra:
\(\dfrac{DE}{AM}+\dfrac{DF}{AM}=\dfrac{BD}{BM}+\dfrac{DC}{BM}=\dfrac{BC}{BM}=\dfrac{2BM}{BM}=2\)