b) \(\dfrac{2x^2+xy-y^2}{2x^2-3xy+y^2}=\dfrac{\left(x^2+xy\right)+\left(x^2-y^2\right)}{\left(2x^2-2xy\right)+\left(y^2-xy\right)}\)
\(=\dfrac{x\left(x+y\right)+\left(x+y\right)\left(x-y\right)}{2x\left(x-y\right)-y\left(x-y\right)}=\dfrac{\left(x+y\right)\left(2x-y\right)}{\left(x-y\right)\left(2x-y\right)}=\dfrac{x+y}{x-y}\)


