\(\lim\dfrac{3n^4-3n+2}{5n^4+2}=\lim\dfrac{3-\dfrac{3}{n^3}+\dfrac{2}{n^4}}{5+\dfrac{2}{n^4}}=\dfrac{3}{5}\)
\(\lim\dfrac{4n^2-3}{2n^2+1}=\lim\dfrac{4-\dfrac{3}{n^2}}{2+\dfrac{1}{n^2}}=\dfrac{4}{2}=2\)
\(\lim\dfrac{n^3-8}{2n^4+2}=\lim\dfrac{\dfrac{1}{n}-\dfrac{8}{n^4}}{2+\dfrac{2}{n^4}}=\dfrac{0}{2}=0\)
\(\lim n^3\left(4-\dfrac{2}{n^2}+\dfrac{1}{n^3}\right)=+\infty.4=+\infty\)
\(\lim n^2\left(-5+\dfrac{8}{n}-\dfrac{3}{n^2}\right)=+.\left(-5\right)=-\infty\)