\(d,=\left(2x+1-x+3\right)^2=\left(x+4\right)^2=x^2+8x+16\\ e,=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{128}+1\right)\\ =\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{128}+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{128}+1\right)\\ =\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\left(2^{128}+1\right)\\ =\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\left(2^{128}+1\right)\\ =\left(2^{64}-1\right)\left(2^{64}+1\right)\left(2^{128}+1\right)\\ =\left(2^{128}-1\right)\left(2^{128}+1\right)=2^{256}-1\)