\(b)x^2-5x-2(x-5)=0\\<=>(x^2-5x)-2(x-5)=0\\<=>x(x-5)-2(x-5)=0\\<=>(x-5)(x-2)=0\\\)
\(< =>\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy x =5 hoặc x =2
\(x^2-5x-2\left(x-5\right)=0\)
\(\Rightarrow x\left(x-5\right)-2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)