b) \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xyz-3x^2y-3xy^2=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)\)
c) \(=m\left(a+b\right)-\left(a+b\right)=\left(a+b\right)\left(m-1\right)\)


