Bài 4 :
a, \(PT\Leftrightarrow\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.\)
Vậy ...
b, \(PT\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{2}\\x+\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}-\dfrac{3}{4}=-\dfrac{1}{4}\\x=-\dfrac{1}{2}-\dfrac{3}{4}=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy ,...
c, \(PT\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-\left|-2,15\right|+\left|-3,75\right|=3,75-2,15=\dfrac{8}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=\dfrac{8}{5}\\x+\dfrac{4}{15}=-\dfrac{8}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{28}{15}\end{matrix}\right.\)
Vậy ...
Bài 5 :
a, \(BPT\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow-1< x< 2\)
Vậy ...
b, Ta có : \(BPT\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{2}{3}\end{matrix}\right.\)
Vậy ...