HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tìm giá trị nhỏ nhất của biểu thức:
\(A=x^2+y^2-xy-2x-2y+9\)
Cho các số thực a, b, c thỏa mãn: \(\left(a+b+c\right)\left(ab+bc+ca\right)=2018\) và \(abc=2018\)
Tính giá trị biểu thức \(A=\left(b^2c+2018\right)\left(c^2a+2018\right)\left(a^2b+2018\right)\)
Cho \(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\) với điều kiện 0 < x < y
Tính giá trị biểu thức \(B=\dfrac{x-y}{x+y}\)
Cho x, y, z khác 0 đôi một khác nhau thỏa mãn \(\dfrac{21}{4x}+\dfrac{21}{4y}+\dfrac{21}{4z}=0\)
Tính giá trị biểu thức \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Cho các số hữu tỉ a, b, c và d thỏa mãn điều kiện:
\(\left\{{}\begin{matrix}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{matrix}\right.\)
Tính giá trị của biểu thức \(M=a^3-a+3b^4-3b+5c^5-5c+7d^6-7d\)
Cho các số x, y, z dương thỏa mãn \(x^2+y^2+z^2=1\)
Tìm giá trị nhỏ nhất của biểu thức \(M=\dfrac{1}{16x^2}+\dfrac{1}{4y^2}+\dfrac{1}{z^2}\)
Cho các số thực x, y, z thỏa mãn \(x+2y+3z=0\) và \(2xy+6yz+3zx=0\)
Tính giá trị biểu thức \(S=\dfrac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Tìm giá trị lớn nhất của biểu thức \(N=\dfrac{4x+1}{4x^2+2}\)