Vì tổng của p2 + q2 + r2 \(⋮2\)
=> \(\left[{}\begin{matrix}p⋮2\\q⋮2\\r⋮2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}p=2\\q=2\\r=2\end{matrix}\right.\);
Giả sử r = 2 => p2 + q2 = 5050 ; p;q lẻ
=> Chữ số tận cùng p2 chỉ có thể là 9;1
=> Chư số tận cùng p là 1;3;7;9
mà p2 + q2 = 5050 => q2 \(< 5050\) ; p2 < 5050
<=> q < 72 (1) ; p < 72 (2)
Lại có p2 + q2 = 5050
<=> 2pq = 5050 - (p - q)2 < 5050
<=> pq \(< 2525\) (3)
Từ (1) ; (3) => p > 35 (4)
Từ (2) ; (4) => 35 < p < 72
<=> p \(\in\left\{37;41;43;47;53;59;61;67;71\right\}\)
Thử từng giá trị p => tìm được p = 71 thỏa mán
thay vào pt gốc được q = 3 (tm)
Vậy các cặp (p;q;r) thỏa là (71;3;2) và các hoán vị