\(P=-3x^2-4x\sqrt{y}+16x-2y+12\sqrt{y}+1998\)
\(\Leftrightarrow3P=-9x^2-12x\sqrt{y}-4y+16\left(3x+2\sqrt{y}\right)-64-\left(2y-4\sqrt{y}+2\right)+6060\)
\(=-\left(3y+2\sqrt{y}-8\right)^2-2\left(\sqrt{y}-1\right)^2+6060\le6060\)
=> P \(\le2020\)
"=" khi \(\left\{{}\begin{matrix}3x+2\sqrt{y}=8\\\sqrt{y}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy Min P = 2020 khi x = 2 ; y = 1