Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Với các số thực x, y thỏa mãn:\(x-\sqrt{x+6}=\sqrt{y+6}-y\). Tìm giá trị lớn nhất(nếu có) của biểu thức A=x+y

Akai Haruma
9 tháng 10 2021 lúc 8:24

Lời giải:

ĐKĐB $\Leftrightarrow x+y=\sqrt{x+6}+\sqrt{y+6}$

$\Rightarrow (x+y)^2=(\sqrt{x+6}+\sqrt{y+6})^2\leq (x+6+y+6)(1+1)$ (theo BĐT Bunhiacopxky)

$\Leftrightarrow (x+y)^2\leq 2(x+y+12)$

$\Leftrightarrow (x+y)^2-2(x+y)-24\leq 0$

$\Leftrightarrow (x+y+4)(x+y-6)\leq 0$

$\Leftrightarrow -4\leq x+y\leq 6$

Vậy $A_{\max}=6$

 


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Lê Bảo Nghiêm
Xem chi tiết
Big City Boy
Xem chi tiết