Thôi liên hợp cho nhanh :v :v \(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\)(đk\(-1\le x\le4\) )
<=> \(\sqrt{x+1}-\left(\dfrac{1}{3}x+1\right)+\sqrt{4-x}-\left(2-\dfrac{1}{3}x\right)\)
\(+\sqrt{\left(x+1\right)\left(4-x\right)}-2=0\)
<=> \(\dfrac{1}{3}\left[\dfrac{9\left(x+1\right)-\left(x+3\right)^2}{\sqrt{x+1}+\left(x+3\right)}\right]+\dfrac{1}{3}\left[\dfrac{9\left(4-x\right)-\left(6-x\right)^2}{\sqrt{4-x}+\left(6-x\right)}\right]\)
+ \(\dfrac{\left(x+1\right)\left(4-x\right)-4}{\sqrt{\left(x+1\right)\left(4-x\right)}+2}=0\)
<=> \(\dfrac{3x-x^2}{3\left[\sqrt{x+1}+\left(x+3\right)\right]}+\dfrac{3x-x^2}{3\left[\sqrt{4-x}+\left(6-x\right)\right]}\)
\(+\dfrac{3x-x^2}{\sqrt{\left(x+1\right)\left(4-x\right)}+2}=0\)
<=> \(\left(3x-x^2\right)\left(\dfrac{1}{3\left[\sqrt{x+1}+\left(x+3\right)\right]}+\dfrac{1}{3\left[\sqrt{4-x}+\left(6-x\right)\right]}+\dfrac{1}{\sqrt{\left(x+1\right)\left(4-x\right)}+2}\right)=0\)
Dễ thấy \(\dfrac{1}{3\sqrt{x+1}+3\left(x+3\right)}+\dfrac{1}{3\sqrt{4-x}+3\left(6-x\right)}+\dfrac{1}{\sqrt{\left(x+1\right)\left(4-x\right)}+2>0\forall-1\le x\le4}\)
=> \(x\left(3-x\right)=0\)
<=> \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) ( TM)
P/s: Hiểu ko???????????