trong mặt phẳng tọa đọ Oxy cho A(1,2); B(-2,1) a) Tính diện tích tam giác OAB và tọa độ giao điểm M của AB với trục hoành b) Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC?
Hỏi đáp
trong mặt phẳng tọa đọ Oxy cho A(1,2); B(-2,1) a) Tính diện tích tam giác OAB và tọa độ giao điểm M của AB với trục hoành b) Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC?
Cho tam giác ABC vuông tại A có AB=a, AC=a\(\sqrt{3}\) và AM là trung tuyến. Tích vô hướng \(\overrightarrow{BA}.\overrightarrow{AM}\)
\(tanB=\dfrac{AC}{AB}=\sqrt{3}\Rightarrow B=60^0\)
\(\Rightarrow\widehat{BAM}=\widehat{B}=60^0\)
\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)
\(\overrightarrow{BA}.\overrightarrow{AM}=-\overrightarrow{AB}.\overrightarrow{AM}=-AB.AM.cos\widehat{BAM}=-\dfrac{a^2}{2}\)
Cho các vecto \(\left|\overrightarrow{a}\right|=x,\left|\overrightarrow{b}\right|=y,\left|\overrightarrow{z}\right|=c\) và vecto a+b+3c=0. Tính \(A=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\)
\(\overrightarrow{a}+\overrightarrow{b}+3\overrightarrow{c}=\overrightarrow{0}\Leftrightarrow\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=-2\overrightarrow{c}\)
\(\Leftrightarrow\left(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right)^2=\left(-2\overrightarrow{c}\right)^2\)
\(\Leftrightarrow\overrightarrow{a}^2+\overrightarrow{b}^2+\overrightarrow{c}^2+2\left(\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\right)=4\overrightarrow{c}^2\)
\(\Leftrightarrow A=\dfrac{4x^2-\left(x^2+y^2+z^2\right)}{2}=\dfrac{3x^2-y^2-z^2}{2}\)
Tính \(\overrightarrow{a}.\overrightarrow{b}\) hả bạn?
\(\overrightarrow{a}.\overrightarrow{b}=\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|cos\left(\overrightarrow{a};\overrightarrow{b}\right)=2.\sqrt{3}.cos30^0=3\)
Đặt \(A=\left|\overrightarrow{a}+\overrightarrow{b}\right|\Rightarrow A^2=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|.cos\left(\overrightarrow{a};\overrightarrow{b}\right)\)
\(=2^2+3+2.2.\sqrt{3}.cos30^0=13\)
\(\Rightarrow\left|\overrightarrow{a}+\overrightarrow{b}\right|=\sqrt{13}\)
Cho hình thang ABCD vuông tạ A và D. AB=AD=a, CD=2a. Khi đó tích vô hướng \(\overrightarrow{AC}.\overrightarrow{BD}\)
\(\overrightarrow{AC}.\overrightarrow{BD}=\left(\overrightarrow{AD}+\overrightarrow{DC}\right)\left(\overrightarrow{BA}+\overrightarrow{AD}\right)\)
\(=\overrightarrow{AD}.\overrightarrow{BA}+\overrightarrow{AD}^2+\overrightarrow{DC}.\overrightarrow{BA}+\overrightarrow{DC}.\overrightarrow{AD}\)
\(=\overrightarrow{AD}^2-\overrightarrow{AB}.\overrightarrow{DC}=a^2-a.2a=-a^2\)
Cho tam giác ABC vuông tại A có AB=4. Kết quả \(\overrightarrow{BA}.\overrightarrow{BC}\)
Đề thiếu, chỉ có thế này thì ko thể tính được tích vô hướng đã cho
Cho hình vuông ABCD cạnh a . Tính giá trị các biểu thức sau:
a) \(\overrightarrow{AB}.\overrightarrow{AC}\)
b)\(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{BD}+\overrightarrow{BC}\right)\)
c)\(\overrightarrow{AB}.\overrightarrow{BD}\)
d) \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\left(2\overrightarrow{AD}-\overrightarrow{AB}\right)\)
e) \(\left(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right)\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\right)\)
a, \(AC=\dfrac{AB}{sin45^o}=\dfrac{a}{\dfrac{\sqrt{2}}{2}}=a\sqrt{2}\)
\(\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos\widehat{BAC}=a.a\sqrt{2}.cos45^o=a^2\)
b, \(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{BD}+\overrightarrow{BC}\right)=\overrightarrow{AC}\left(\overrightarrow{BD}+\overrightarrow{BC}\right)\)
\(=\overrightarrow{AC}.\overrightarrow{BD}+\overrightarrow{AC}.\overrightarrow{BC}\)
\(=AC.BD.cos90^o+AC.AD.cos45^o\)
\(=a\sqrt{2}.a\sqrt{2}.0+a\sqrt{2}.a.\dfrac{\sqrt{2}}{2}=a^2\)
c, \(\overrightarrow{AB}.\overrightarrow{BD}=AB.BD.cos135^o=-a.a\sqrt{2}.\dfrac{\sqrt{2}}{2}=-a^2\)
d, \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\left(2\overrightarrow{AD}-\overrightarrow{AB}\right)=\overrightarrow{BC}.\left(\overrightarrow{AD}+\overrightarrow{BD}\right)\)
\(=\overrightarrow{BC}.\overrightarrow{AD}+\overrightarrow{BC}.\overrightarrow{BD}\)
\(=AD^2+BC.BD.cos45^o\)
\(=a^2+a.a\sqrt{2}.\dfrac{\sqrt{2}}{2}=2a^2\)
e, \(\left(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right)\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\right)\)
\(=\left(\overrightarrow{AC}+\overrightarrow{AC}\right)\left(\overrightarrow{DB}+\overrightarrow{DB}\right)\)
\(=4.\overrightarrow{AC}.\overrightarrow{DB}=4.AC.DB.cos90^o=0\)
Trong mặt phẳng toạ độ Oxy , cho 3 điểm A(3;-1) , B(2;10) , C(-4;2). Tính tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC}\)
\(\overrightarrow{AB}=\left(-1;11\right)\);\(\overrightarrow{AC}=\left(-7;3\right)\)
\(\overrightarrow{AB}.\overrightarrow{AC}=\left(-1;11\right).\left(-7;3\right)=\left(-1\right).\left(-7\right)+11.3=40\)
Giúp mình câu nào cũng được ạ:(((
Cho tam giác ABD có AB = 4, AD = 6, \(\widehat{BAD}\) = 60o. Tính độ dài của đoạn thẳng BD.
Mọi người giúp em với ạ!!! Thank you <3
Định lý hàm cosin:
\(BD=\sqrt{AB^2+AD^2-2AB.AD.cos\widehat{BAD}}=2\sqrt{7}\)