Đặt \(log_9a=log_{12}b=log_{15}\left(a+b\right)=t\Rightarrow\left\{{}\begin{matrix}a=9^t\\b=12^t\\a+b=15^t\end{matrix}\right.\)
\(\Rightarrow9^t+12^t=15^t\)
\(\Rightarrow\left(\dfrac{3}{5}\right)^t+\left(\dfrac{4}{5}\right)^t=1\)
Hàm \(f\left(t\right)=\left(\dfrac{3}{5}\right)^t+\left(\dfrac{4}{5}\right)^t\) có \(f'\left(t\right)=\left(\dfrac{3}{5}\right)^tln\left(\dfrac{3}{5}\right)+\left(\dfrac{4}{5}\right)^t.ln\left(\dfrac{4}{5}\right)< 0\Rightarrow\) nghịch biến trên R
\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm \(\Rightarrow t=2\) là nghiệm duy nhất
\(\Rightarrow\dfrac{a}{b}=\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\)