Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải hộ mình bài tập này với:
Cho pt: cos3x.cosx - (m - 1).sin2x + sin3x.sinx +1 = 0
a. Giải pt vs m=2
b.Tìm m để pt có nghiệm.
1.Giải các pt sau
a) tan2x + cotx = 8cos2x
b) cotx - tanx + 4sin2x = 2 / sin2x ( dấu chia nha )
c) 5 sinx - 2 = 3(1 - sinx)tan2x
2.Tìm tham số m để pt có nghiệm
a) (m + 1)sin2x - sin2x + cos2x = 0
b) 2sin2x + msin2x = 2m
c) Nghiệm thuộc khoảng [0:π/4] sin2x - 4sinxcox + (m-2)cos2x = 0
Giải pt:
1. (\(\sqrt{9-x^2}\)-2x).(x\(^3\)+x\(^2\)-12x+10)=0 2. cos3x+2cos\(^2\)(x+\(\dfrac{\pi}{6}\))=1
Bài 2 Tìm tập xác định của hàm số y = \(\dfrac{\sqrt{1-sin2x}}{cos3x}\)
Bài 3 : cho pt (cosx+1)(cos-2x-mcosx)=msin\(^2\) x
tìm m để pt có đúng 2 nghiệm phân biệt thuộc \([0;\dfrac{2\pi}{3}\)\(]\)
bài 4: cho hàm số y= x\(^3\)-2mx\(^2\)+(7m-8)x-5m=10 có đồ thị (C\(_m\)) và đường thẳng d: y=x+m. tìm m để d cắt ( C\(_m\)) tai ba điểm phân biêt
giúp e với mn ơiiii
cho pt \(\sqrt{3}sin2x-2cos^2x-m=0\) tìm m thỏa mãn pt có nghiệm x\(\in\left[\frac{\Pi}{4};\frac{5\Pi}{12}\right]\)
1. Tìm m để PT có nghiệm:
a) \(\sqrt{3}\cos^2x+\dfrac{1}{2}\sin2x=m\)
b) \(3\sin^2x-2\sin x\cos x+m=0\)
c) \(\sin^2x+2\left(m-1\right)\sin x\cos x-\left(m+1\right)\cos^2x=m\)
1. Tìm m để PT có nghiệm:
a) \(\sqrt{3}\cos^2x+\dfrac{1}{2}\sin2x=m\)
b) \(3\sin^2x-2\sin x\cos x+m=0\)
c) \(^{ }\sin^2x+2\left(m-1\right)\sin x\cos x-\left(m+1\right)\cos^2x=m\)
tìm nghiệm NN của pt
\(\frac{2cos2x}{1-sin2x}\)=0
Cho phương trình: m ( sinx + cosx + 1 ) = 1 + sin2x. Tìm m đê PT có nghiệm thuộc đoạn \(\left[0,\frac{\pi}{2}\right]\)
tìm m pt : 2 ( sin x +cos x) + sin2x +m2 -4\(\sqrt{2}\) m =0 có nghiệm x thuộc (0;\(\dfrac{\pi}{2}\))