Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Tìm m để PT có nghiệm:
a) \(\sqrt{3}\cos^2x+\dfrac{1}{2}\sin2x=m\)
b) \(3\sin^2x-2\sin x\cos x+m=0\)
c) \(\sin^2x+2\left(m-1\right)\sin x\cos x-\left(m+1\right)\cos^2x=m\)
1. Tìm m để PT có nghiệm:
a) \(\sqrt{3}\cos^2x+\dfrac{1}{2}\sin2x=m\)
b) \(3\sin^2x-2\sin x\cos x+m=0\)
c) \(^{ }\sin^2x+2\left(m-1\right)\sin x\cos x-\left(m+1\right)\cos^2x=m\)
1) sin2x + 2cosx = 0
2) sin(2x -10*) = \(\dfrac{1}{2}\) (-120* <x< 90*)
3) cos(2x+10*)= \(\dfrac{\sqrt{2}}{2}\)(-180*<x<180*)
4) \(\sin^2\left(5x+\dfrac{2\pi}{5}\right)-\cos^2\)(\(\dfrac{x}{4}-\pi\)) =0
1.Giải các pt sau
a) tan2x + cotx = 8cos2x
b) cotx - tanx + 4sin2x = 2 / sin2x ( dấu chia nha )
c) 5 sinx - 2 = 3(1 - sinx)tan2x
2.Tìm tham số m để pt có nghiệm
a) (m + 1)sin2x - sin2x + cos2x = 0
b) 2sin2x + msin2x = 2m
c) Nghiệm thuộc khoảng [0:π/4] sin2x - 4sinxcox + (m-2)cos2x = 0
Giải pt:
1. (\(\sqrt{9-x^2}\)-2x).(x\(^3\)+x\(^2\)-12x+10)=0 2. cos3x+2cos\(^2\)(x+\(\dfrac{\pi}{6}\))=1
Bài 2 Tìm tập xác định của hàm số y = \(\dfrac{\sqrt{1-sin2x}}{cos3x}\)
Bài 3 : cho pt (cosx+1)(cos-2x-mcosx)=msin\(^2\) x
tìm m để pt có đúng 2 nghiệm phân biệt thuộc \([0;\dfrac{2\pi}{3}\)\(]\)
bài 4: cho hàm số y= x\(^3\)-2mx\(^2\)+(7m-8)x-5m=10 có đồ thị (C\(_m\)) và đường thẳng d: y=x+m. tìm m để d cắt ( C\(_m\)) tai ba điểm phân biêt
giúp e với mn ơiiii
1) Giải phương trình sau: \(\frac{1}{2}sinx=sin\frac{x}{2}.cos^2\frac{x}{2}\) (*)
2) Trung bình cộng của GTLN và GTNN của hàm số y = \(-sin^2x-4sinx+2\).
3) Tìm giá trị của m để phương trình (m + 1)sin2x + 2cos2x = 2m vô nghiệm.
4) Tìm tổng các nghiệm thuộc khoảng (0;101) của phương trình \(sin^4\frac{x}{2}+cos^4\frac{x}{2}=1-2sinx\).
5) Tìm nghiệm thuộc 0 < x < π của phương trình \(sin2x=-\frac{1}{2}\).
6) Tìm nghiệm thuộc 0 ≤ x ≤ 2π của phương trình \(\sqrt{2}cos\left(x+\frac{\pi}{3}\right)=1\).
7) Tìm nghiệm của phương trình sin(x + 17 độ).cos(x - 22 độ) + cos(x + 17 độ).sin(x - 22 độ) = \(\frac{\sqrt{2}}{2}\) thỏa điều kiện x ∈ (0 độ; 90 độ).
8) Cho ΔABC có các góc A, B, C thỏa mãn sinA.sinB.sinC = \(\frac{3\sqrt{3}}{8}\) . Chứng minh ΔABC đều.
1) sin\(\sin\left[\pi sin2x\right]\)=1
2) cos\(\left[\dfrac{\pi}{2}.cos\left(x-\dfrac{\pi}{4}\right)\right]\)=\(\dfrac{\sqrt{2}}{2}\)
3) sin(x+24*) + sin(x+144*) = cos20*
Tìm m để phương trình sau có nghiệm:
\(4sin\left(x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)=m^2+\sqrt{3}.sin2x-cos2x\)
1. CM:
\(\dfrac{1}{2}\le\dfrac{\sin x+2\cos x+3}{2\sin x\cos x+3}\le2\)
2. Giải PT:
a) \(\dfrac{1}{\cos x}=4\sin x+6\cos x\)
b) \(\sin^3\left(x-\dfrac{\pi}{4}\right)=\sqrt{2}\sin x\)
c) \(\dfrac{1}{\cos x}+\dfrac{1}{\sin2x}=\dfrac{2}{\sin4x}\)