\(x.\left(8y-4\right)=160\)
\(\Leftrightarrow x.4.\left(2y-1\right)=160\)
\(\Leftrightarrow x.\left(2y-1\right)=40\)
Vì \(x;y\in Z\)
\(\Rightarrow2y-1\) là số lẻ
\(2y-1\inƯ_{40}\)
\(\Rightarrow2y-1\in\left\{1;5;-1;-5\right\}\)
(+) Vơi 2y - 1 = 5
\(\Rightarrow\begin{cases}x=8\\y=3\end{cases}\)
(+) Vơi 2y - 1 = 1
\(\Rightarrow\begin{cases}x=40\\y=1\end{cases}\)
(+) Vơi 2y - 1 = - 5
\(\Rightarrow\begin{cases}x=-8\\y=-4\end{cases}\)
(+) Vơi 2y - 1 = - 1
\(\Rightarrow\begin{cases}x=-40\\y=0\end{cases}\)
Vậy \(\left(x;y\right)\in\left\{\left(8;3\right);\left(40;1\right);\left(-8;-4\right);\left(-40;0\right)\right\}\)