\(\sqrt{x+3}=\sqrt{5-x}\)
\(\Leftrightarrow x+3=5-x\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
\(\sqrt{x+3}=\sqrt{5-x}\)
\(\Leftrightarrow x+3=5-x\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
Bài 3. Cho biểu thức : B = 1/(2sqrt(x) - 2) - 1/(2sqrt(x) + 2) + (sqrt(x))/(1 - x) A = (1 - (5 + sqrt(5))/(1 + sqrt(5)))((5 - sqrt(5))/(1 - sqrt(5)) - 1)
a) Tính A
b) Tìm ĐKXĐ rồi rút gọn biểu thức B;
c) Tính giá trị của B với x = 9
d) Tìm giá trị của x để |B| = A
\(A=\dfrac{5\sqrt{x}+3x}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{7}{\sqrt{x}+3}\)
Tìm điều kiện của x để A nguyên
tìm x,biết:
a) 2√2x-5√8x+7√18x=28
b)√4x-20+√x-5-1/3√9x-45=4
c)√\(x^2\) -4-√x-2=0
Bài 1: Tìm x để mỗi căn thức sau có nghĩa:
√x+7; √x-5; √3-2/3x; √5-3x
Cho biểu thức \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}};x\ge0,x\ne1\)
a) Rút gọn P.
b) Tính giá trị của P tại x thỏa mãn \(\left|2x-5\right|=3\)
c) Tìm các giá trị của x để P = 3.
d) Tìm các giá trị của x để \(P>\dfrac{1}{2}\).
e) Tìm các giá trị nguyên của x để P có giá trị nguyên.
Tìm GTNN của A = \(\dfrac{5-3\sqrt{x}}{\sqrt{x}+2}\) với \(x\ge0\)
Bài 1: Giải phương trình
\(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\)
Bài 2: Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-3};\) B = \(\dfrac{7}{\sqrt{x}+1}-\dfrac{12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\) .
a) Rút gọn M = A – B
b) Tìm giá trị nguyên nhỏ nhất để biểu thức M đạt giá trị nguyên nhỏ nhất.
Giúp mình với, mình đang cần gấp ạ
Tìm x biết:
a)\(\sqrt{9x^2}=6\)
b)\(\sqrt{\left(x-2\right)^2}=5\)
c)\(\sqrt{x^2-6x+9}=3\)
d)\(\sqrt{x^2+4x+4}-2x=3\)
* Giải phương trình
a. \(\sqrt{\left(x-3\right)^2}=2\)
b. \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
* Cho Q= \(\dfrac{1}{x-2\sqrt{x}+3}\)
Tìm giá trị lớn nhất của Q
Tìm đkxđ của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\) - \(\sqrt[3]{2x-1}\)