a) Xét ΔMCA và ΔMAD có:
∠M chung
∠NAC=∠MDA
-> ΔMCA ∞ ΔMAD (g.g)
->\(\dfrac{MC}{MA}=\dfrac{MA}{MD}\)
_>MC.MD=MA2
b) Xét △MOA vuông tại ∠A
MA.MO=MA2(hệ thức lượng)
mà MC.MD=MA2(cmt)
-> MC.MD=MH.MO
a) Xét ΔMCA và ΔMAD có:
∠M chung
∠NAC=∠MDA
-> ΔMCA ∞ ΔMAD (g.g)
->\(\dfrac{MC}{MA}=\dfrac{MA}{MD}\)
_>MC.MD=MA2
b) Xét △MOA vuông tại ∠A
MA.MO=MA2(hệ thức lượng)
mà MC.MD=MA2(cmt)
-> MC.MD=MH.MO
Từ một điểm m nằm ngoài đường tròn (O) ta vẽ hai tiếp tuyến MA MB và cát tuyến MCD ko đi qua tâm O, gọi I là trung điểm của CD. Cm tứ giác MAOB và MIOB nội tiếp
từ một điểm m ở ngoài đường tròn tâm O có bán kính r vẽ hai tiếp tuyến MA và MB (A'B là tiếp điểm) Gọi H là giao điểm OM và AB .
đường thẳng MO cắt tâm O tại I và c i nằm giữa m và O chứng minh Ai là tia phân giác của góc
Cho đường tròn (O; R) cố định. Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Gọi H là giao điểm của OM và AB.
a) Chứng minh OM vuông góc với AB và OH.OM = R2
b) Từ M kẻ cát tuyến MNP với đường tròn (N nằm giữa M và P), gọi I là trung điểm của NP (I khác O). Chứng minh 4 điểm A, M, O, I cùng thuộc một đường tròn và tìm tâm của đường tròn đó
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA và MB theo thứ tự ở C và D. Biết MA = 5cm, tính chu vi tam giác MCD.
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt tia MA và MB lần lượt tại E và F. Xác định vị trí của M để diện tích tam giác MEF nhỏ nhất.
Cho đường tròn (O;R) và một điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MB,MC tới (O) (B,C là tiếp điểm). Gọi H là giao điểm của MO với BC. Vẽ đường kính BA. a) Cm các điểm M,B,O,C cùng nằm trên 1 đg tròn b) Cm: CH^2=OH.HM c) Gọi F là trung điểm của MH,AH cắt (O) tại giao điểm thứ hai là Q.Cm tam giác MBH đồng dạng tam giác BAC và B,Q,F thẳng hàng
Cho đường tròn bán kính (O; R). Từ một điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC. Vẽ cát tuyến AMN không qua O ( M nằm giữa A và N) Gọi I là trung điểm của MN. a. Chứng minh O, I,A,C cùng đường tròn. b. Hai đường thẳng BC và OI cắt nhau tại D chứng minh OI*OD=R^2
Cho đường tròn (O) và điểm A nằm ngoài đường tròn đó. Từ điểm A kẻ hai tiếp tuyến AM, AN với đường tròn (O) (M,N là 2 tiếp điểm ). Kẻ cát tuyến ABC không đi qua O (B nằm giữa A và C ) gọi H là trung điểm của BC
a) chứng minh rằng các điểm o,h,m,a,n cùng thuộc 1 đường tròn
b) chứng minh HA là tia phân giác góc MHN
Cho đường tròn (O) và điểm M nằm bên ngoài đường tròn. Từ M kẻ các tiếp tuyến MN và MH ( N, H là các tiếp điểm), I là giao điểm của MO và NH
a, C/m: NH ⊥ OM
b, Kẻ đường kính ND, MD cắt (O) tại K.
C/m: MI.MO = MK.MD
Cho (O;3); M nằm ngoài đường tròn. Kẻ trung tuyến MA; MB. Biết MO=5.
a/ Tính AB.
b/ Chúng minh rằng: OM⊥AB.
c/ Kẻ đường kính BD; Chứng minh rằng: AD // MB.
d/ Gọi H là giao điểm AB và BM; I là trung điểm MH. Gọi K là giao điểm DH và đường tròn O; Chứng minh rằng: B,I,D thẳng hàng.