Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nghi Hoàng

: Từ điểm A nằm bên ngoài đường tròn (O) vẽ cát tuyến ADE không đi qua tâm O và hai tiếp tuyến AB, AC đến đường tròn tâm (O). OA cắt BC tại H, DE cắt đoạn BH tại I. Chứng minh: a/ OA ⊥BC tại H và AB2 = AD.AE b/ Tứ giác DEOH nội tiếp. c/ AD.IE = AE.ID

An Thy
19 tháng 7 2021 lúc 19:31

a) Vì AB,AC là tiếp tuyến \(\Rightarrow\Delta ABC\) cân tại A có AO là phân giác \(\angle BAC\)

\(\Rightarrow OA\bot BC\)

Xét \(\Delta ABD\) và \(\Delta AEB:\) Ta có: \(\left\{{}\begin{matrix}\angle ABD=\angle AEB\\\angle EABchung\end{matrix}\right.\)

\(\Rightarrow\Delta ABD\sim\Delta AEB\left(g-g\right)\Rightarrow\dfrac{AB}{AE}=\dfrac{AD}{AB}\Rightarrow AB^2=AD.AE\)

b) tam giác ABO vuông tại B có đường cao BH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=AH.AO\Rightarrow AH.AO=AD.AE\Rightarrow\dfrac{AH}{AE}=\dfrac{AD}{AO}\)

Xét \(\Delta AHD\) và \(\Delta AEO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AH}{AE}=\dfrac{AD}{AO}\\\angle EAOchung\end{matrix}\right.\)

\(\Rightarrow\Delta AHD\sim\Delta AEO\left(c-g-c\right)\Rightarrow\angle AHD=\angle AEO\Rightarrow DEOH\) nội tiếp

c) Ta có: \(\angle BHE=90-\angle OHE=90-\angle ODE\) (DEOH nội tiếp)

\(=90-\dfrac{180-\angle DOE}{2}=\dfrac{1}{2}\angle DOE=\dfrac{1}{2}\angle DHE\) (DEOH nội tiếp)

\(\Rightarrow HB\) là phân giác \(\angle DHE\Rightarrow\dfrac{ID}{IE}=\dfrac{DH}{HE}\)

Vì HB là phân giác \(\angle DHE\) và \(HA\bot HB\Rightarrow HA\) là phân giác ngoài \(\angle DHE\)

\(\Rightarrow\dfrac{AD}{AE}=\dfrac{DH}{HE}=\dfrac{ID}{IE}\Rightarrow AD.IE=ID.AE\)

undefined

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 20:01

a) Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC tại H

Xét ΔADB và ΔABE có 

\(\widehat{BAD}\) chung

\(\widehat{ABD}=\widehat{AEB}\left(=\dfrac{1}{2}sđ\stackrel\frown{BD}\right)\)

Do đó: ΔADB\(\sim\)ΔABE(g-g)

Suy ra: \(\dfrac{AD}{AB}=\dfrac{AB}{AE}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=AD\cdot AE\)


Các câu hỏi tương tự
Kudo Shinichi
Xem chi tiết
thái
Xem chi tiết
Bùi Lộc
Xem chi tiết
Quốc Anh Vương
Xem chi tiết
Lý Thế Phong
Xem chi tiết
Nguyễn Nguyên Khánh
Xem chi tiết
Soda Sữa
Xem chi tiết
Ctuu
Xem chi tiết
Hoang Vu
Xem chi tiết