Ta có : \(\overrightarrow{u_{HK}}=\left(-1;2\right)\Rightarrow\overrightarrow{n_{HK}}=\left(2;1\right)\)
PTTQ của BK : \(2\left(x-1\right)+1\left(y-0\right)=0\)
\(\Leftrightarrow2x+y-2=0\)
PTTQ của AC : \(-1\left(x-0\right)+2\left(y-2\right)=0\)
\(\Leftrightarrow x-2y+4=0\)
Gọi \(A\left(a;b\right)\) mà \(A\in AC\Rightarrow A\left(a;\frac{a+4}{2}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_M-x_A=6-a\\y_B=2y_M-y_B=2-\frac{a+4}{2}=-\frac{a}{2}\end{matrix}\right.\Rightarrow B\left(6-a;\frac{-a}{2}\right)\)
Mà \(B\in BK\Rightarrow2\left(6-a\right)-\frac{a}{2}-2=0\)
\(\Rightarrow a=4\)
Do đó \(A\left(4;4\right);B\left(2;-2\right)\)
\(\overrightarrow{u_{AB}}=\left(-2;-6\right)\Rightarrow\overrightarrow{n_{AB}}=\left(6;-2\right)\)
PTTQ của AB : \(6\left(x-4\right)-2\left(y-4\right)=0\)
\(\Leftrightarrow3x-y-8=0\)
Có : \(\overrightarrow{u_{AH}}=\left(-3;-4\right)\Rightarrow\overrightarrow{n_{BC}}=\left(-3;-4\right)\)
PTTQ của BC : \(-3\left(x-2\right)-4\left(y+2\right)=0\)
\(\Leftrightarrow3x+4y+2=0\)
Vậy \(\left\{{}\begin{matrix}BC:3x+4y+2=0\\AB:3x-y-8=0\\AC:x-2y+4=0\end{matrix}\right.\)