Phương trình hoành độ giao điểm là:
\(x^2-3x-m^2+1=0\)
\(a=1;b=-3;c=-m^2+1\)
\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)
\(=9+4m^2-4=4m^2+5>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
Phương trình hoành độ giao điểm là:
\(x^2-3x-m^2+1=0\)
\(a=1;b=-3;c=-m^2+1\)
\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)
\(=9+4m^2-4=4m^2+5>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\)và đường thẳng (d): \(y=3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để |x1|+2.|x2|=3
Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=2.\left(m-2\right)x+5\). Tìm điều kiện của m để đường thẳng (d) cắt đường cong (P) tại 2 điểm phân biệt có hoành độ x1, x2 (Giả sử x1<x2) thỏa mãn: \(\left|x_1\right|-\left|x_2+2\right|=10\)
Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=-x^2\) và đường thẳng (d) đi qua điểm I(0;-1) và có hệ số góc k.
a) Gọi hoành độ của A; B lần lượt là x1, x2. Chứng minh: \(\left|x_1-x_2\right|\ge2\)
b) Chứng minh: Tam giác OAB vuông
Trong mặt phẳng tọa độ Oxy , cho đường thẳng (d)y=mx+5
a) Chứng minh rằng đường thẳng (d) luôn đi qua điểm A(0;5) với mọi m
b) Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P):y=x^2 tại hai điểm phân biệt có hoành độ lần lượt là \(x_1,x_2\) ( với \(x_1< x_2\) ) sao cho \(\left|x_1\right|>\left|x_2\right|\)
Giải hộ mình câu c thôi nhoa!
Cho: \(\left(P\right):y=x^2\) và \(\left(d\right):y=2.\left(m-1\right)x+m^2+2m\)
a) Tìm tọa độ giao điểm của (d) và (P) với m=-1
b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn: \(x_1^2+x_2^2+4x_1x_2=36\)
c) Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
Trong mặt phẳng tọa độ Oxy cho parabol (P): \(y=x^2\) và đường thẳng (d) \(y=\frac{-2}{3}\left(m+1\right)x+\frac{1}{3}\)
1, CMR với mỗi giá trị của m đường thẳng (d) cắt (P) tại hai điểm phân biệt
2, Gọi x1,x2 là hoành độ các giao điểm ( d) và (P), đặt \(f\left(x\right)=x^3+\left(m+1\right)x^2-x\). CMR \(f\left(x_1\right)-f\left(x_2\right)=\frac{-1}{2}\left(x_1-x_2\right)^3\)
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d):y=2mx-2m-3 và parabol (P):y=\(x^2\) .Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1;x_2\) thõa mãn :\(x^3_1-2mx_1^2-\left(2m+3\right)x_2+3x_1x_2=-7\)
Trong mặt phẳng toạ độ Oxy cho Parabol (P): \(y=x^2\) và đường thẳng (d): \(y=mx+2\)
a) Chứng minh rằng với mọi giá trị của m thì đường thẳng (d) luôn cắt parabol (P) tại 2 điểm nằm về 2 phía của trục tung
b) Giả sử đường thẳng (d) cắt Parabol (P) tại \(A\left(x_1;y_1\right)\) và \(B\left(x_2;y_2\right)\). Tìm giá trị của m để \(\left|y_1-y_2\right|=\sqrt{24-x^2_2-mx_1}\)
(Làm hộ mình câu c nha)
Trong mặt phẳng tọa độ Oxy cho parabol (P): \(y=-x^2\) và đường thẳng (d) đi qua I(0;-1) và có hệ số góc k
a) CMR với mọi k thì đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt A;B
b) Gọi hoành độ của A; B lần lượt là x1;x2. CM: \(\left|x_1-x_2\right|\ge2\)
c) Chứng minh: Tam giác OAB vuông