Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Machiko Kayoko

Trong mặt phẳng tọa độ Oxy cho đường thẳng (d):y=2mx-2m-3 và parabol (P):y=\(x^2\) .Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1;x_2\) thõa mãn :\(x^3_1-2mx_1^2-\left(2m+3\right)x_2+3x_1x_2=-7\)

Nguyễn Việt Lâm
23 tháng 5 2019 lúc 13:29

Phương trình hoành độ giao điểm: \(x^2-2mx+2m+3=0\)

\(\Delta'=m^2-2m-3>0\Rightarrow\left[{}\begin{matrix}m< -1\\m>3\end{matrix}\right.\)

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m+3\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên \(x_1^2-2mx_1+2m+3=0\Rightarrow x_1^2-2mx_1=-\left(2m+3\right)\)

Ta có:

\(x_1\left(x_1^2-2mx_1\right)-\left(2m+3\right)x_2+3x_1x_2=-7\)

\(\Leftrightarrow-x_1\left(2m+3\right)-\left(2m+3\right)x_2+3x_1x_2+7=0\)

\(\Leftrightarrow-\left(2m+3\right)\left(x_1+x_2\right)+3x_1x_2+7=0\)

\(\Leftrightarrow-\left(2m+3\right).2m+3\left(2m+3\right)+7=0\)

Đến đây bạn tự giải nốt


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Kim Taehyung
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết
Linh Nhi
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết