(AB) : a.(x -1 ) + by = 0
ax + by -a = 0
d(I ; AB) = m = \(\frac{\left|2a+b-a\right|}{\sqrt{a^2+b^2}}=\frac{\left|a+b\right|}{\sqrt{a^2+b^2}}\) (m > 0)
AB = c ( c >0)
\(S_{\Delta IAB}=\frac{1}{2}.AB.d\left(I;AB\right)=\frac{1}{2}.c.m\)
=> 4 = c.m => c = 4/m (1)
theo định lí py - ta - go , ta có
\(\frac{AB^2}{4}+d\left(I;AB\right)^2=R^2\)
=> \(\frac{c^2}{4}+m^2=4\) (2)
Thế (1) vào (2) , ta đc
\(\frac{4}{m^2}+m^2=4\)
=> m4 - 4m2 + 4 = 0
=> m = \(\sqrt{2}\)
=> \(\frac{\left|a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\)
Chọn a =1
=> 1 + 2b + b2 = 2 + 2b2
=> b2 - 2b + 1 =0
=> b = 1
vậy (AB) : x + y -1 = 0
#mã mã#