\(y'=\frac{-1}{\left(x-1\right)^2}\), gọi \(M\left(a;\frac{1}{a-1}\right)\)
Phương trình tiếp tuyến d qua M:
\(y=\frac{-1}{\left(a-1\right)^2}\left(x-a\right)+\frac{1}{a-1}\)
Gọi giao điểm của d với Ox và Oy lần lượt là A và B \(\Rightarrow\left\{{}\begin{matrix}A\left(2a-1;0\right)\\B\left(0;\frac{2a}{\left(a-1\right)^2}\right)\end{matrix}\right.\)
Do \(S_{OAB}=2\Rightarrow\frac{1}{2}OA.OB=2\Rightarrow OA.OB=4\)
\(\Rightarrow\left|\left(2a-1\right)\frac{2a}{\left(a-1\right)^2}\right|=4\Rightarrow\left\{{}\begin{matrix}\frac{2a\left(2a-1\right)}{\left(a-1\right)^2}=4\\\frac{2a\left(2a-1\right)}{\left(a-1\right)^2}=-4\end{matrix}\right.\) \(\Rightarrow a=\frac{2}{3}\)
\(\Rightarrow M\left(\frac{2}{3};-3\right)\)