Chương 5: ĐẠO HÀM

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

Cho hàm số \(y=\dfrac{2x+m+1}{x-1}\) (C\(_m\)). tìm m để tiếp tuyến của C\(_m\) tại điểm có hoành độ \(x_0=2\) tạo 2 trục tọa độ 1 tam giác có diện tích \(\dfrac{25}{2}\)

Nguyễn Việt Lâm
2 tháng 4 2021 lúc 18:34

\(y'=\dfrac{-3-m}{\left(x-1\right)^2}\) ; \(y\left(2\right)=m+5\) ; \(y'\left(2\right)=-m-3\)

Phương trình tiếp tuyến tại điểm có hoành độ \(x=2\):

\(y=\left(-m-3\right)\left(x-2\right)+m+5\)

\(\Leftrightarrow y=-\left(m+3\right)x+3m+11\)

Để tiếp tuyến cắt 2 trục tạo thành tam giác \(\Rightarrow m\ne\left\{-3;-\dfrac{11}{3}\right\}\)

Gọi A và B lần lượt là giao điểm của tiếp tuyến với Ox và Oy

\(\Rightarrow A\left(\dfrac{3m+11}{m+3};0\right)\) ; \(B\left(0;3m+11\right)\)

\(\Rightarrow OA=\left|\dfrac{3m+11}{m+3}\right|\) ; \(OB=\left|3m+11\right|\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{25}{2}\Rightarrow\dfrac{\left(3m+11\right)^2}{\left|m+3\right|}=25\)

\(\Leftrightarrow\left(3m+11\right)^2=25\left|m+3\right|\Rightarrow\left[{}\begin{matrix}\left(3m+11\right)^2=-25\left(m+3\right)\\\left(3m+11\right)^2=25\left(m+3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}9m^2+91m+196=0\\9m^2+41m+46=0\end{matrix}\right.\) \(\Rightarrow m=...\)