Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng minh hiếu 0

- tính

\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

- Cho Tam Giác ABC Vuông tại A;Đường cao AH ; A, Biết AH=6cm , BH=4.5cm . tính AB,AC,BC,HC ; b, Biết AB=6cm , BH=3cm Tính AH,AC,CH

Hoàng Thị Ánh Phương
4 tháng 3 2020 lúc 17:27

Bài 1 :

Áp dụng : \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+b^3+3ab\left(a+b\right)\)

Ta đặt : \(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}.x\)

\(=18+3\sqrt[3]{81-80}.x\)

\(=18+3x\)

\(\Rightarrow x^3-18-3x=0\)

\(\Rightarrow x^3-3x^2+3x^2-9x+6x-18=0\)

\(\Leftrightarrow x^2\left(x-3\right)+3x\left(x-3\right)+6\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+6\right)=0\)

\(x^2+3x+6=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{15}{4}=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}>0\)

Suy ra : \(x-3=0\)

\(\Rightarrow x=3\)

Vậy \(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}=3\)

Khách vãng lai đã xóa
Akai Haruma
5 tháng 3 2020 lúc 21:55

Bài 2:

a) Áp dụng định lý Pitago cho tam giác vuông $ABH$:

$AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5$ (cm)

Theo công thức hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC\Rightarrow BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5$ (cm)

Áp dụng đly Pitago cho tam giác $ABC$:

$AC=\sqrt{BC^2-AB^2}=\sqrt{12,5^2-7,5^2}=10$ (cm)

$CH=BC-BH=12,5-4,5=8$ (cm)

b)

Áp dụng định lý Pitago cho tam giác $ABH$:

$AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-3^2}=3\sqrt{3}$ (cm)

Áp dụng công thức hệ thức lượng trong tam giác vuông:

$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}$

$\Rightarrow \frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{(3\sqrt{3})^2}-\frac{1}{6^2}$

$\Rightarrow AC=6\sqrt{3}$ (cm)

Áp dụng định lý Pitago cho tam giác $ACH$:

$CH=\sqrt{AC^2-AH^2}=\sqrt{(6\sqrt{3})^2-(3\sqrt{3})^2}=9$ (cm)

Khách vãng lai đã xóa
Akai Haruma
5 tháng 3 2020 lúc 21:59

Hình vẽ:

Violympic toán 9

Khách vãng lai đã xóa

Các câu hỏi tương tự
Xem chi tiết
Đặng Ngọc Hà
Xem chi tiết
san nguyễn
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
trần văn bằng
Xem chi tiết
Ngọc Hồ
Xem chi tiết
Phương Minh
Xem chi tiết