ĐK: \(x\ge1\)
\(A=\sqrt{x-1+2\sqrt{x-1}.1+1}+\sqrt{x-1-2\sqrt{x-1}.1+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
Do \(\sqrt{x-1}+1>0\) nên:
\(A=\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\)
+) Với \(1\le x< 2\) thì \(\sqrt{x-1}-1< 0\Rightarrow\left|\sqrt{x-1}-1\right|=1-\sqrt{x-1}\)
Khi đó \(A=2\)
+) Với \(x\ge2\) thì \(\sqrt{x-1}-1>0\Rightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\)
Khi đó \(A=2\sqrt{x-1}\)
P/s: Em không chắc nha!