cho biểu thức B=\(\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{8\sqrt{x}+8}{x+2\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}}\right):\left(\frac{x+\sqrt{x}+3}{2+2\sqrt{x}}+\frac{1}{\sqrt{x}}\right)\)so sánh \(B^{2019}\)với 1
Giải pt :
a) \(x^2+3x\sqrt[3]{3x+3}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
b) \(\sqrt{\left(x-1\right)\left(3-x\right)}+\sqrt{x+2}=\sqrt{x-1}+\sqrt{3-x}+\frac{x}{2}\)
Các bạn giải giúp mình bài toán này nha:
Tìm giá trị nhỏ nhất của biểu thức sau:
x,, y, z là các số dương.
\(P=\sqrt[3]{4\left(x^3+y^3\right)}+\sqrt[3]{4\left(x^3+z^3\right)}+\sqrt[3]{4\left(z^3+x^3\right)}+2\left(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\right)\)
Xin chân thành cảm ơn.
Bài 1:Cho phương trình :
\(\frac{3x-m+5}{\sqrt{2-3x}}+\sqrt{2-3x}=\frac{2x+2m-1}{\sqrt{2-3x}}\) với m là tham số
Tìm tất cả các giá trị của m để phương trình có nghiệm
Bài 2:Giải phương trình:
\(\left(x-2\right)^4+4\left(x^2+2x-1\right)^4=5\left(x^3-5x+2\right)^2\)
Giải các phương trình sau:
a) \(\sqrt{x-1}+\sqrt{x-2}=\sqrt{x+1}\)
b) \(x^2+2x+3\sqrt{x^2+2x+2}-6=0\)
c) \(\sqrt{\left(x+1\right)\left(2-x\right)}-1+2x=2x^2\)
d) \(\sqrt{\frac{2x}{x+1}}+\sqrt{\frac{x+1}{2x}}=2\)
1, \(x^3-x-3=2\sqrt{6x-x^2}\)
2, \(x^3+6x^2-171x-40\left(x+1\right)\sqrt{5x-1}+20=0\)
3, \(\sqrt[3]{x+3}+\sqrt[3]{x-3}=\sqrt[5]{x-5}+\sqrt[5]{x+5}\)
4. \(\left(\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{x+1}\right)^2=\frac{4\left(1+\sqrt{1+4x}\right)}{x+1+\sqrt{x^2+3x+2}}\)
1.\(\sqrt{\frac{\left(1-x\right)}{x}}=\frac{\left(2x+x^2\right)}{1+x^2}\)
2. 3(2-\(\sqrt{x+2}\))=2x+\(\sqrt{x+6}\)
3. \(\sqrt[3]{x+2}+\sqrt[3]{x+1}=\sqrt[2]{2x^2}+\sqrt[3]{2x^2+1}\)
4. \(\sqrt[3]{x+24}+\sqrt{12-x}=6\)
Toán 10 ạ, giúp em với
Cho biểu thức M=[\(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)- \(\left(\sqrt{X}+2\right)\)]\(\dfrac{\left(\sqrt{x}-1\right)^2}{2}\) Tìm điều kiện của x để M có nghĩa và rút gọn M Chứng minh M <=\(\dfrac{1}{4}\)
tính giá trị của biểu thức A=\(\left(x^5+x^4-x^3+1\right)^{2012}+\frac{\left(x^2+x-3\right)^{2012}}{x^5+x^4-x^3-2^{2012}}\). Khi x=\(\frac{\sqrt{5-1}}{2}\)