Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phi Yến Trần Phan

tìm x,y,z nguyên 

x2+y2+z2-xy-3y-2z+4=0

Tippy Ham Học
30 tháng 12 2016 lúc 20:39

mk k bt lm. Mk ms hk lp 8...

Akai Haruma
23 tháng 1 2017 lúc 15:59

Lời giải:

Nhân $4$ vào cả hai vế, phương trình trở thành:

\(4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)

\(\Leftrightarrow (2x-y)^2+3(y-2)^2+(2z-2)^2=0\)

\((2x-y)^2, (y-2)^2,(2z-2)^2\geq 0\forall x,y,z\in\mathbb{Z}\) nên

\((2x-y)^2+3(y-2)^2+(2z-2)^2\geq 0\)

Dấu $=$ xảy ra khi \(\left\{\begin{matrix} 2x-y=0\\ y-2=0\\ 2z-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\\ z=1\end{matrix}\right.\)

Vậy \((x,y,z)=(1,2,1)\) là nghiệm của HPT

Mạch Trần Quang Nhật
1 tháng 1 2019 lúc 0:18

Ta có \(x^2+y^2+z^2-xy-3y-2z+4=0\)

Nhân cả 2 vế với 4

\(\Leftrightarrow4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+12\right)+\left(4z^2-8z+4\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2+\left(2z-2\right)^2=0\left(1\right)\)

\(\left(2x-y\right)^2\ge0;\) \(3\left(y-2\right)^2\ge0;\) \(\left(2z-2\right)^2\ge0\)

Để xảy ra (1) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\2z-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)

Vậy \(x^2+y^2+z^2-xy-3y-2z+4=0\) tại x = 1; y = 2; z = 1


Các câu hỏi tương tự
Nguyễn Linh Chi
Xem chi tiết
dam thu a
Xem chi tiết
Đức Anh Gamer
Xem chi tiết
dbrby
Xem chi tiết
vung nguyen thi
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
anbe
Xem chi tiết
Khánh Nguyễn
Xem chi tiết
Khánh Ngọc
Xem chi tiết