Có \(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
<=> \(a+b+c\ge3.\frac{bc+ac+ab}{abc}=\frac{bc+ac+ab}{a+b+c}\)( vì abc=a+b+c)
<=> \(\left(a+b+c\right)^2\ge3\left(bc+ac+ab\right)\)
<=> \(a^2+b^2+c^2+2bc+2ac+2ab-3bc-3ac-3ab\ge0\)
<=> \(a^2+b^2+c^2-ab-ac-bc\ge0\)
<=> 2a2+2b2+2c2-2ab-2ac-2bc \(\ge0\)
<=> (a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2) \(\ge0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.< =>a=b=c\)
Vậy \(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
1) Có \(2x=-3y=4z\)
=> \(y=\frac{2x}{-3}\) ,\(z=\frac{2x}{4}=\frac{x}{2}\)
Có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
<=> \(\frac{1}{x}+\frac{1}{\frac{2x}{-3}}+\frac{1}{\frac{x}{2}}=3\)
<=>\(\frac{1}{x}-\frac{3}{2x}+\frac{2}{x}=3\) <=> \(\frac{2-3+4}{2x}=3\) <=> 3=6x
<=> x=\(\frac{1}{2}\)
=> y=\(\frac{\frac{1}{2}.2}{-3}=-\frac{1}{3}\) , \(z=\frac{2}{\frac{1}{2}}=4\)
Vậy (x,y,z)\(\in\left\{\frac{1}{2},-\frac{1}{3},4\right\}\)