Lời giải:
ĐK: $x\geq 0$
$\sqrt{4+\sqrt{x}}=2$
$\Rightarrow 4+\sqrt{x}=2^2=4$ (bình phương 2 vế)
$\Rightarrow \sqrt{x}=0\Rightarrow x=0$ (thỏa mãn)
Vậy......
Lời giải:
ĐK: $x\geq 0$
$\sqrt{4+\sqrt{x}}=2$
$\Rightarrow 4+\sqrt{x}=2^2=4$ (bình phương 2 vế)
$\Rightarrow \sqrt{x}=0\Rightarrow x=0$ (thỏa mãn)
Vậy......
Cho \(x,y\ge0\) thỏa mãn \(x+y=2\sqrt{3}.\)Tìm Max:
\(P=\left(x^4+1\right)\left(y^4+1\right)\)
Cho a,b,c là các số thực không âm thỏa mãn \(a^2+b^2+c^2=6\).Tìm giá trị nhỏ nhất:\(P=\sqrt{4-a^2}+\sqrt{4-b^2}+\sqrt{4-c^2}\)
Cho x >0; y> 0 thỏa mãn \(x^2+y^2\le x+y\)
CMR \(x+3y\le2+\sqrt{5}\)
\(\text{Cho x,y,z }\in R\text{ thỏa mãn điều kiện }xyz=1\text{.Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|\left|zx\right|\right).\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
Tìm x biết:
a) \(\sqrt{x}\) < 3
b) \(\sqrt{4-x}\) ≤ 2
c) \(\sqrt{x+2}\) = \(\sqrt{4-x}\)
d) \(\sqrt{x^{2^{ }}-1}\) = x - 1
\(\sqrt{\dfrac{x+2}{4}}+\sqrt{25x+50}-2\sqrt{x+2}=14\) ; \(\sqrt{2x+3}=x\) ; \(\sqrt{25x^2+20x+4}=1\) ; \(\sqrt{\dfrac{x+1}{2x-1}}=2\) ; \(\dfrac{\sqrt{x-2}}{\sqrt{3x+1}}=6\)
Tìm x
M=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
a) Rút gọn
b) Tính giá trị của M khi x= \(3+2\sqrt{2}\)
c) Tìm giá trị của x để M>0
Cho x,y,z >0 thỏa x+y+z=\(\sqrt{2021}\)
Tìm Min:
\(P=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}.\left(\dfrac{\sqrt{y+z}}{x}+\dfrac{\sqrt{z+x}}{y}+\dfrac{\sqrt{x+y}}{z}\right)\)
Tìm x biết :
a) \(\sqrt{9x}+\sqrt{x}=12\)
b) \(\dfrac{\sqrt{x}+3}{4}=\dfrac{\sqrt{x}}{3}\)
c) \(\dfrac{5\sqrt{x}-x}{\sqrt{x}}=2\)
tìm x:
\(\sqrt{x^2+x+1}=1\)
\(\sqrt{x^2+1}=-3\)
\(\sqrt{x^2-10x+25}=7-2x\)
\(\sqrt{2x+5}=5\)
\(\sqrt{x^2-4x+4}-2x+5=0\)