2:
a: =căn 17-4-căn 17=-4
b: =5-2căn 3-2căn 3=5-4căn 3
1:
a: =>|x+1|=-x
=>x<=0 và (x+1)^2=x^2
=>x<=0 và (x+1+x)(x+1-x)=0
=>x=-1/2
2:
a: =căn 17-4-căn 17=-4
b: =5-2căn 3-2căn 3=5-4căn 3
1:
a: =>|x+1|=-x
=>x<=0 và (x+1)^2=x^2
=>x<=0 và (x+1+x)(x+1-x)=0
=>x=-1/2
Rút gọn:
a) \(2\sqrt{98}-3\sqrt{18}+\dfrac{1}{2}\sqrt{32}\)
b)\(\left(5\sqrt{2}+2\sqrt{5}\right).\sqrt{5}-\sqrt{250}\)
c)\(\left(2\sqrt{3}-5\sqrt{2}\right).\sqrt{3}-\sqrt{36}\)
d)\(3\sqrt{48}+2\sqrt{27}-\dfrac{1}{3}\sqrt{243}\)
e) \(6\sqrt{\dfrac{1}{3}}+\dfrac{9}{\sqrt{3}}-\dfrac{2}{\sqrt{3}-1}\)
f)\(4\sqrt{\dfrac{1}{2}}-\dfrac{6}{\sqrt{2}}\dfrac{2}{\sqrt{2}+1}\)
1. Rút gọn \(A=\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
2. Tính \(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
3.Tính \(C=\frac{\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\cdot\left(3+\sqrt{5}\right)}{\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}}\)
rút gọn:
A=\(x-4-\sqrt{16-8x^2+x^4}\left(x>4\right)\)
B=\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\left(a,b>0,a\ne b\right)\)
Tính:
a,y=2\(+\sqrt{17-4\sqrt{9}+4\sqrt{5}}\)
b,t=\(\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right)\)
c,x=\(\sqrt{19+8\sqrt{3}}+\sqrt{19-8\sqrt{3}}\)
Bài 1 1) Tìm điều kiện để căn thức\(\sqrt{-3x+6}\) có nghĩa 2) Tính \(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\) b)\(3\sqrt{8}-\sqrt{50}-\sqrt{\left(\sqrt{2}-1\right)^2}\) Bài 2 Cho \(M=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\left(a>0;a\ne4\right)\) Bài 3 1 tính a)\(\sqrt{313^2-312^2}+\sqrt{17^2-8^2}\) b)\(\frac{2+\sqrt{2}}{1+\sqrt{2}}\) 2) giải hệ phương trình\(\left\{{}\begin{matrix}2x+y=3\\3x-2y=1\end{matrix}\right.\) 3) tìm x biết\(\sqrt{9\left(x-1\right)}=21\)
a. \(\sqrt{x}\left(\sqrt{x}-3\right)-5\left(\sqrt{x}+3\right)\)
b. \(3\left(2+\sqrt{x}\right)+\left(\sqrt{x}+3\right)\left(2-\sqrt{x}\right)\)
c. \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-5\left(\sqrt{x}-1\right)\)
d. \(3\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
Bài 1: Tìm GTNN A=\(\left(3\sqrt{x}-2\right)^2-\left(\sqrt{x}+2\right)^2\) B=\(\left(\sqrt{x}+6\right)^2+\left(\sqrt{x}-2\right)^2+7\) Bài 2: Tìm GTLN A=\(\left(\sqrt{x}-3\right)^2+\left(2\sqrt{x}+3\right)^2\) B=\(2018-x-y+2\sqrt{x}+4\sqrt{x}\) (x,y>=0) C=\(\dfrac{5x^2+17}{2x^2+1}\) Giúp mk vs mk cần vào T7 mong mn giúp đỡ nhiều. Mk xin cảm ơn ạ.
1. Tính:
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\)
2. Chứng minh:
a) \(\dfrac{\left(3\sqrt{xy}-6y.2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{y}{\sqrt{x}-\sqrt{y}}-\dfrac{2\sqrt{xy}}{xy}\right)=\sqrt{x}+\sqrt{y}\)
giải pt: \(x^2+x-17=\sqrt{\left(x^2-15\right)\left(x-3\right)}+\sqrt{x^2-15}+\sqrt{x-3}\)